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Incorporating standard high-order spatial approximations in the alternating-direction-implicit (ADI) finite-difference time-domain
(FDTD) method does not suffice for accuracy improvement, as these operators are capable of reducing spatial errors only. We herein
propose an alternative design procedure, which guarantees finite-difference expressions that minimize the overall space-time flaws. In
essence, error formulas are derived from the individual implicit equations, when the ADI update is treated as a single-step process.
Then, efficient spatial expressions are extracted via proper manipulations of these formulas that apply error-controlling concepts.

Index Terms—Electromagnetic propagation, error correction, finite-difference methods, numerical stability.

I. INTRODUCTION

UNCONDITIONALLY-STABLE methods [1]–[3] consti-
tute suitable solutions for many problems, as the selection

of their temporal resolution depends on accuracy, rather than
stability restrictions. Among available schemes, the alternating-
direction-implicit (ADI) finite-difference time-domain (FDTD)
technique [4] is very popular with attractive features, e.g. it is
second-order accurate in time, unlike other approaches (such
as the locally-one-dimensional (LOD) scheme [5]). Reliability
improvement is always desirable, since this would translate into
allowing larger time-steps without any performance penalty.

In this paper, we propose the use of extended spatial sten-
cils to amend the errors of the ADI-FDTD method in two-
dimensional (2D) problems. Unlike existing schemes [6], the
spatial approximations are now designed to control the overall
error, not just the spatial one. To accomplish our goal, dif-
ferent operators are derived for different field components, by
exploiting error formulas pertinent to the corresponding update
equations. In this manner, significant performance upgrade via
simple coefficient modification is accomplished.

II. METHODOLOGY

The application of the classic ADI-FDTD method follows(
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where u = [Ex Ey Hz]
T in 2D, I is the unitary matrix, and

A, B are 3 × 3 matrices involving first-order derivatives. We
select operators with extended stencils, as a means to introduce
design parameters that will enable controlling (and, eventually,
improving) the accuracy of the algorithm. Specifically, the
finite-difference approximations have the form
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where w denotes correspondence to either electric (e) or
magnetic (m) components, and u ∈ {x, y} indicates the axis

of differentiation. Then, A and B are written as
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Since intermediate values u|n+

1
2 are not calculated accurately,

we treat the algorithm as a single-step approach:(
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As seen, there exist two terms involving the mixed operator
Dm

y De
x, which render the ADI-FDTD method a perturbation

of the Crank-Nicolson approach, since only two of the three
equations comply to the latter discretization scheme.

Let’s first consider the Ey calculation. A description of
the pertinent error can be found by admitting plane-wave
solutions for the field components. Specifically, if ϕ is the
direction of wave propagation and Hz = H0e

j(ωt−k·r), then
Ey = ηH0e

j(ωt−k·r) cosϕ, where k is the wave-vector, ω
the angular frequency, and η the characteristic impedance
of the background medium. The update equation is then
written as Λm

x (Ñ ,Q,R, ϕ) = 0, where Ñ = λ̃/∆x is the
grid density (with respect to the numerical wavelength), Q
determines the time-step size via Q = c0∆t

√
∆x−2 +∆y−2,

and R = ∆y/∆x. By introducing the exact wavelength instead,
we obtain the non-vanishing quantity Λm

x (N,Q,R, ϕ),
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which is characteristic of the entailed numerical error. To cal-
culate the unknown coefficients, we derive the aforementioned
formula’s trigonometric expansion, by exploiting
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where Jn is the first kind, n-th order Bessel function. Then,
the vanishing of the first two terms produces two equations
that determine the form of the Dm
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Interestingly, we find that the new coefficients attain the values
of the standard fourth-order operators, in the limit case N →
+∞, as it is Cm

1 = 9
8 +O( 1

N2 ) and Cm
1 = − 1

24 +O( 1
N2 ).

The same approach is applied to the third update equation,
which involves both x- and y-derivatives for electric field
components. The definition of another error formula and the
elimination of (now four) terms in its trigonometric expansion
generates optimized versions of the De

x and De
y operators.

In the last step, the construction of Dm
y from the first

update equation is performed. In this case, a more complicated
formula Λm

y is derived, owing to the presence of the additional
(mixed derivative) terms. Now, the first harmonics (Λm

y =
Λm
y,1 sinϕ+Λm

y,3 sin(3ϕ)+. . .) are obtained numerically, rather
than analytically, by applying the well-known formula
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III. PERFORMANCE ASSESSMENT

First, the spectral properties of the modified algorithm are
examined by means of the errors affecting the numerical phase
velocity. The latter is calculated from the dispersion relation,
which is obtained from (4), after setting u = u0e

j(ωt−k·r) and
requiring the existence of non-trivial solutions:

16 tan2(ω∆t
2 )

(c0∆t)
2 = (c0∆t)2Re

xR
m
x Re

yR
m
y − 4(Re

xR
m
x +Re

yR
m
y )

(10)
where

Rw
u = − 2j

∆u

2∑
ℓ=1

Cw
u,ℓ sin

(
2ℓ− 1

2
ku∆u

)
(11)

If the proposed approach is valid, the error should exhibit
low levels, at least at the frequency where the procedure is
performed. Table I presents the error in the phase velocity,
averaged over [0, 2π), for standard and novel ADI-FDTD
schemes. We select Q = 15, R = 1, and grid densities
corresponding to 40m, m = 1, 2, 4, 8, cells per wavelength.
Similarly to our initial observations, the results verify that
the use of fourth-order approximations makes little difference,
compared to the second-order approach, especially for high
Q values. On the other hand, the error is reduced significantly

TABLE I
OVERALL ERROR FOR VARIOUS METHODS AND MESH RESOLUTIONS

cpw 2nd-order 4th-order Proposed

40 1.97× 10−1 1.96× 10−1 6.46× 10−3

80 4.77× 10−2 4.75× 10−2 3.83× 10−4

160 1.18× 10−2 1.18× 10−2 2.40× 10−5

320 2.95× 10−3 2.94× 10−3 1.51× 10−6
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Fig. 1. Overall error in numerical phase velocity versus mesh discretization
density (in cells per wavelength – cpw) for various cases.

when the new operators are applied, and converges at a fourth-
order rate, despite the second-order accuracy in time.

The effect of the new operators on the wideband perfor-
mance of the ADI-FDTD method is depicted in Fig. 1, where
the error in the phase velocity is plotted over a range of
discretizations (Q = 5, R = 1). The cases where the design
frequency corresponds to N0 = 30, 60, or 90 cells per wave-
length are shown, against the standard fourth-order expressions.
The appearance of sharp minima at the design points validates
again the consistency of the proposed approach. In addition, the
adoption of the modified expressions does not compromise the
algorithm’s broadband response, since substantial improvement
is also identified over an extended frequency range.

Numerical results from test simulations will be included in
the full version of the paper. Preliminary simulations of a
rectangular resonant cavity supporting three different modes
exhibit error reduction by at least an order of magnitude.
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